Non-Bayesian Estimation and Prediction under Weibull Interval Censored Data
نویسندگان
چکیده مقاله:
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the unknown Weibull parameters using the mid-point approximation and approximate maximum likelihood (AML). After obtaining the parameter estimation, the prediction of X can be made. Moreover, the 95% bootstrap confidence intervals of unknown parameters and the 95% bootstrap prediction bounds of X are presented. The performance of the proposed procedure based on the mean squared error (MSE) and the average width (AW) of the confidence interval is investigated by employing Monte Carlo simulation. A Real data set is also studied to illustrate the proposed procedure.
منابع مشابه
Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملBayesian Prediction of future observation based on doubly censored data under exponential distribution
In many experiments about lifetime examination, we will faced on restrictions of time and sample size, which this factors cause that the researcher can’t access to all of data. Therefore, it is valuable to study prediction of unobserved values based on information of available data. in this paper we have studied the prediction of unobserved values in two status of one-sample and two-sample, whe...
متن کاملEstimation of Weibull Shape Parameter by Shrinkage towards an Interval under Failure Censored Sampling
This paper is speculated to propose a class of shrinkage estimators for shape parameter β in failure censored samples from two-parameter Weibull distribution when some ‘apriori’ or guessed interval containing the parameter β is available in addition to sample information and analyses their properties. Some estimators are generated from the proposed class and compared with the minimum mean squar...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملAnalysis of interval-censored data with Weibull lifetime distribution
In this work the analysis of interval-censored data, with Weibull distribution as the underlying lifetime distribution has been considered. It is assumed that censoring mechanism is independent and non-informative. As expected, the maximum likelihood estimators cannot be obtained in closed form. In our simulation experiments it is observed that the Newton-Raphson method may not converge many ti...
متن کاملBayesian Inference of the Weibull Model Based on Interval-Censored Survival Data
Interval-censored data consist of adjacent inspection times that surround an unknown failure time. We have in this paper reviewed the classical approach which is maximum likelihood in estimating the Weibull parameters with interval-censored data. We have also considered the Bayesian approach in estimating the Weibull parameters with interval-censored data under three loss functions. This study ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 1
صفحات 171- 190
تاریخ انتشار 2020-08
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023